Contact Information

- Instructor: Dr. Gregory Wolffe (wolffe@gvsu.edu)
- Office: 718 Eberhard Center (331-6824)
- Hours: Monday, Wednesday 5:00 - 6:00, and whenever.
- Info Page: http://www.cis.gvsu.edu/~wolffe/courses/cs459
 Includes all course policies, announcements, assignments and class documents.

Course Description and Objectives

Design issues and software engineering methodologies for embedded computer systems development.
To obtain a working knowledge of programming techniques for a real-time embedded microprocessor.
Topics covered include:

- CPUs and instruction sets
- Processes, threads, and scheduling
- Memory, I/O devices, and interconnects
- Program and system design
- Efficient and optimized coding

Suggested Prerequisites

- Hardware background: EGR 226 or CS 251
- Software background: EGR 261 or CS 361

Textbooks

Required:

- Computers as Components; Wayne Wolf; Morgan Kaufmann; 2001.

Grading

<table>
<thead>
<tr>
<th>Grading</th>
<th>Grading Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>20% Homework</td>
<td>A 90%</td>
</tr>
<tr>
<td>40% Lab assignments</td>
<td>B 80%</td>
</tr>
<tr>
<td>40% Exams</td>
<td>C 70%</td>
</tr>
<tr>
<td></td>
<td>D 60%</td>
</tr>
<tr>
<td></td>
<td>F <60%</td>
</tr>
</tbody>
</table>

Course Policies

- Homework and programming projects are due at the beginning of class on the due date. NO late
 assignments will be accepted unless prior arrangements have been made.
- Homework assignments, unless otherwise specified by the instructor, are to be completed
 individually. Students are encouraged to consult each other for instructional assistance only.
- Exams may only be rescheduled with prior approval of the instructor.
- The deadline to drop with a “W” is Tuesday, June 9th, at 5:00 p.m.
Course Outline

1. Introduction / Background

2. Design
 • Modeling and analysis
 • Specification and Design
 • Programming techniques
 • Design methodologies

3. Instruction Sets
 • Data processing
 • Control transfer
 • Memory access

4. CPUs
 • Registers
 • Pipelining
 • Interrupts, exceptions
 • Performance evaluation

4. Scheduling
 • Processes
 • Threads
 • Scheduling policies
 • Synchronization and concurrency

5. Memory
 • Memory management unit
 • Protected memory
 • Cache memory

6. Computing Platform
 • I/O devices
 • Interconnects
 • Networking
 • Data communications

Midterm: Wednesday, 5/24
Final Exam: Wednesday, 6/21 (6:00 - 7:50 p.m.)