Chapter 4
Geometric Objects & Transformations

 Scalars, Points, Vectors

- Scalars = real numbers
- A point is a fixed location in space
 - Need a coordinate system to specify location
 - Cartesian coordinate
- A vector indicates direction in space
 - has magnitude / length
 - does not have a fixed location
 - Unit vector: magnitude = 1

Notation

- Point \(A (5, -3) \)
- Vector \(v = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \)

Length of \(v \): \(|v| = \sqrt{4^2 + 3^2} = \sqrt{25} = 5 \)

Operations

- Point-Point subtraction \(v = P - Q \)
- Point-Vector addition: point displacement \(Q + v = P \)
- Scalar-Vector multiplication \(s v = w \)
- Vector-Vector addition \(t = u + v \)

Vector “Multiplication”: Dot Product

- Dot Product / Inner Product \(s = v \cdot w = |v||w| \cos(\Theta) \)
- \(a \cdot b = 0 \) if \(a \) is perpendicular to \(b \)
- \(v = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \ \ w = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \)
 \(v \cdot w = ax + by + cz \)

How to calculate dot product in 3D?

Vector “Multiplication”: Cross Product

- Cross Product / Outer Product \(u = v \times w \)
 \(|u| = |v||w| \sin(\Theta) \)
 \(u \) is perpendicular to both \(v \) and \(w \)
- Three dimensional vectors

\[
\begin{align*}
v &= \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \ \ w &= \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \ \ u &= v \times w = \begin{bmatrix} by - cz \\ cz - ax \\ ax - by \end{bmatrix}
\end{align*}
\]
Geometric Interpretation

- Dot product \(\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \alpha \)
 - \(|\mathbf{b}| \cos \alpha \) is the length of \(\mathbf{b} \) projection to \(\mathbf{a} \)
- Cross product \(\mathbf{a} \times \mathbf{b} \):
 - \(|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \alpha \) is the area of parallelogram formed by \(\mathbf{a} \) and \(\mathbf{b} \), or twice the area of triangle \(\text{OAB} \)

Lines

- Slope-intercept form: \(y = mx + c \)
 - Gradient vector: \([1 \ m]' \)
 - Normal vector: \([-m \ 1]' \)
- Standard form equation: \(ax + by = c \)
 - Normal vector \([a \ b] \)

Lines: Parametric Equation

- Any point \(\mathbf{Z} \) on the line can be expressed as \(\mathbf{Z}(\alpha) = \mathbf{P} + \alpha (\mathbf{Q} - \mathbf{P}) \)
- Parameter \(\alpha \) determines position of \(\mathbf{Z} \)

Parametric Equation of Straight Lines

\[
\begin{align*}
\mathbf{Z}(\alpha) &= \mathbf{P} + \alpha (\mathbf{Q} - \mathbf{P}) \quad \text{or} \quad \mathbf{Z}(\alpha) = \mathbf{P} + \alpha \mathbf{v} \\
\mathbf{Z}(\alpha) &= (1-\alpha) \mathbf{P} + \alpha \mathbf{Q}
\end{align*}
\]

\[
\begin{align*}
\mathbf{Z}(0) &= \mathbf{P} \\
\mathbf{Z}(1) &= \mathbf{Q} \\
\mathbf{Z}(-0.4) &= ? \\
\mathbf{Z}(2.6) &= ?
\end{align*}
\]

Convexity

- A convex object is an object with no “indentation”
- Mathematically, an object is convex if for any two points in the object, the line connecting the points is entirely inside the object

Planes

- 3 arbitrary points make a unique plane
- Each plane has a unique normal vector (perpendicular to the plane)
- Calculate the normal vector from three points?
- Standard equation: \(ax + by + cz = d \)
- Parametric equation of plane:
 - \(\mathbf{Z}(\alpha, \beta) = \mathbf{P} + \alpha (\mathbf{Q} - \mathbf{P}) + \beta (\mathbf{R} - \mathbf{P}) \)
Coordinate System

- Any coordinate frame can be represented as 4x4 matrix (in homogeneous coordinate)
- A point measured by two coordinate frames will yield two different coordinates
 - One coordinate can be converted to the other by using matrix operation (matrix vector multiplication, inverse, ...)
- Homogeneous Coordinate

Homogeneous Coordinate

- Point 2D Cartesian
 \((x, y)\)
- Vector 2D
 \[
 \begin{bmatrix}
 p \\
 q
 \end{bmatrix}
 \]
- Point in 2DH (Homogeneous)
 \((x, y, 1)\)
- Direction 2DH
 \((p, q, 0)\)

Homogeneous Coordinate

- In general a 2D point \((x, y)\) in Cartesian Coordinate is expressed as \((sx, sy, s)\) in 2DH homogeneous coordinate
 - The scaling factor \(s\) is non-zero
- For 3D \((x, y, z) \Rightarrow (sx, sy, sz, s)\)

Advantage of Homogeneous Coordinate

- Easy to express a point at infinity (“direction”) using homogeneous coordinate
 - Example \((2, 1, 0)\) is a point at “positive” infinity along the infinite line connecting \((0,0)\) and \((2,1)\)
 - \((-2, -1, 0)\) is a point at “negative” infinity, the opposite side of \((2,1,0)\)

Matrix

- In Computer Graphics matrices are used for transformation of points, objects, ...
- In general matrices can be any size (rows and columns)
 - In 3D Computer Graphics: 4x4 matrices
- A vector is a “special case” of matrix whose column size is 1

Matrix Operations

- Multiplication
 - Matrix-Vector Multiplication
 - Matrix-Matrix Multiplication
 - Matrix-Scalar Multiplication
- Matrix-Matrix Addition/Subtraction
- Inverse of Matrix
- Identity Matrix
Coordinate Frames in OpenGL

- Object / Model Coordinate Frame (CF)
- World CF
- Eye / Viewer CF
- Clip CF
- Normalized Device CF
- Screen CF

Object-World-Viewer

- Objects are designed in the object CF
- Objects are then placed in the world CF
 - A number of coordinate transformations can be applied to the object coordinate to place it at a desired position and orientation
- Viewer / Camera is also placed in the world
 - A number of coordinate transformations can be applied to the camera CF to place the camera to a desired position and orientation

Inside the Virtual Camera

- After change of coordinate (from object to camera) the following take place inside the virtual camera
 - Clipping (the clipping volume is transformed in to a cube centered at the origin)
 - Perspective normalization (more detail in Chapter 5)
 - Projection to Image Coordinate / Screen Coordinate

3D Transformation Matrices

- Rigid-Body Transformation
 - Rotation (around Origin)
 - Translation
- Non Rigid-Body Transformation
 - Scaling (from Origin)

Use of Transformations

- Modeling Transformation
 - To place the model at a desired orientation / position
- Viewing Transformation
 - To place the camera / viewer at a desired orientation / position
- In OpenGL both transformation are represented by ONE model view matrix

Dual Interpretation of ModelView Matrix Update

- Changing the content of ModelView matrix can be interpreted as either:
 - Moving the object to a different position / orientation
 - Moving the camera to the opposite position / orientation
- Both interpretations must be understood equally well
 - In computer graphics, both interpretations are used
Composite Transformations

- Some operations cannot be expressed as a single linear transformation
 - Door opening / closing
 - Ball rolling
 - Ceiling fan spinning
 - Car turning on a curve
 - car body translates and rotates
 - tires rotate, spin, and translate
 - steering wheel rotates

Concatenation of Transformations

- Transformation matrices can be concatenated (multiplied) in some order to create a composite (complex) transformation
- Understanding the right order is important
- OpenGL postmultiplies each transformation matrix to the current transformation matrix
 - The product then replaces the current

Two Ways of Interpreting Composite Transformations

- Grand Fixed Coordinate Frame
 - All transformations refer to the fixed coordinate frame
 - Assume transformations are taking place in bottom to top order of the source code
- Local Moving Coordinate Frame
 - Each transformation refers to an instantaneous coordinate (locally moving) frame
 - Assume transformations are taking place in top to bottom order of the source code

Hints for Memorization

- Fall Back, Spring Forward
- Go Back vs. Leap Forward
 - Global CF reads Backward
 - Local CF reads Forward

Two ways of Interpreting Composite Transformation

- Regardless of which interpretation you use the visual effect (order of operation by GL engine) remains the same
- Local moving coordinate approach
 - The instantaneous coordinate frame is used for the reference of the next transformation

Interpreting Transformation Sequence: Example

```c
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();  /* M = I */
glRotate(30, 0, 0, 1);  /* M = M Rot */
glTranslate(2, 0, 0);  /* M = M Tran */
glVertex3f (....);  /* vertex P */
```

a) Vertex P is first translated 2 units along grand x-axis and then rotated 30 degrees around the grand z-axis
b) Vertex P is first rotate 30 degrees around a local z axis and then translated 2 units along the x-axis (of the new 30-degree rotated coordinate frame)
Matrix Manipulation in OpenGL

- `glLoadIdentity()`
 - initialize the current matrix to identity
- `glLoadMatrix()`
 - initialize (“upload”) the current matrix from a 16-element array (float or double)
 - Column major order
 - Use `GLfloat[16] mat;` not `GLfloat mat[4][4];`
- `glGetFloat()`, `glGetDoublev()`
 - retrieve (“download”) the current matrix to a 16-element array

OpenGL Matrix Multiplication

- `glMultMatrix (M)`
 - multiply the current matrix (C) with the given matrix (16 elements), save the product back to C
 - Post multiplication: `C = C * M`

Order of Statements

```
gLoadIdentity();
statements to move the object(s) from the origin to the desired pose
statement to draw the object(s) around the origin
```
Point A will be drawn at (100, 40) and line AB points in the NE direction

Matrix Stacks

- ModelView Matrix Stack (up to 32 matrices)
- Projection Matrix Stack (up to 2 matrices)
- OpenGL commands
 - `glPushMatrix()`: push the current matrix to its stack
 - `glPopMatrix()`: pop the topmost matrix from a stack and use it the current matrix
- Practical use: selective transformation

Selective Transformation

```
gLoadIdentity();
gTranslatef(100, 40, 0);
gPushMatrix();
gRotatef(45.0, 0, 0, 1);
BEGIN(GL_LINES);
  glVertex2f(0, 0); /* point A */
  glVertex2f(0, 3); /* point B */
END();
gPopMatrix();
gBegin(GL_LINES);
  glVertex2f(10, 10); /* point C */
  glVertex2f(10, 15); /* point D */
END();
```
// Rotation affects only line AB
Nested Push-Pop

glLoadIdentity();
going {100, 40, 0};
glPushMatrix();
 glRotatef(45, 0, 0, 1);
 glPushMatrix();
 glRotatef(20, 0, 0, 1);
 drawObjectA();
 glPopMatrix();
 drawObjectB();
 glPushMatrix();
 drawObjectC();
 // ObjectA: translated and rotated 65 degrees
 // ObjectB: translated and rotated 45 degrees
 // ObjectC: translated only